<div dir="ltr">From checking also powers of 3, I can't find more than c==5 (for 3**20 and 3**124).<div><br clear="all"><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div style="direction:rtl"><div style="direction:rtl">אורי</div><div style="direction:rtl"><a href="mailto:uri@speedy.net" target="_blank">uri@speedy.net</a></div></div></div></div></div></div></div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jan 4, 2022 at 7:24 AM אורי <<a href="mailto:uri@speedy.net">uri@speedy.net</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Thank you, that's interesting. So all such numbers are divisible by 9. I didn't think about it.<div><br></div><div>You might be interested in my related question:</div><div><a href="https://math.stackexchange.com/questions/4348279/what-is-the-highest-number-of-digits-so-that-this-number-of-digits-in-a-specific" target="_blank">https://math.stackexchange.com/questions/4348279/what-is-the-highest-number-of-digits-so-that-this-number-of-digits-in-a-specific</a></div><div><br></div><div>From checking about the first 50,000 powers of 2, I didn't find c more than 5, who actually appears only twice (c is the number of digits who appear exactly 10% of the time in the decimal form of a specific power of 2).</div><div><br clear="all"><div><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div style="direction:rtl"><div style="direction:rtl">אורי</div><div style="direction:rtl"><a href="mailto:uri@speedy.net" target="_blank">uri@speedy.net</a></div></div></div></div></div></div></div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jan 4, 2022 at 6:53 AM Daniel Shahaf <<a href="mailto:d.s@daniel.shahaf.name" target="_blank">d.s@daniel.shahaf.name</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">אורי wrote on Tue, 04 Jan 2022 04:07 +00:00:<br>
> Are there powers of 2 which give exactly 10% of each of the digits 0 to 9 (in<br>
> decimal form)?<br>
<br>
No, because then the sum of the digits would be a multiple of nine, so the<br>
number wouldn't be a power of two.<br>
</blockquote></div>
</blockquote></div>