How to forbid user space and kernel executable pages from becoming writable?

How to forbid user space and kernel executable pages from becoming writable?

Lev Olshvang levonshe at yandex.com
Sat Jan 5 17:30:01 IST 2019


I am researching this issue and I am confused with the finding

Some articles, ex https://shanetully.com/2013/12/writing-a-self-mutating-x86_64-c-program/
state that mprotect() can change protection of executable section.

As I understanf pte entry has page protection bits set to RO so  mprotect should change pte which is loaded to MMU/TLB. Why kernel can not refuse do perform this mprotect call(). Whu we do norhave kernel config options to forbid user-space mutable code as security feature?



>From the other side,  when  run-time linker or elf_loader loads the executable it uses MAP_DENYWRITE which protect executable file from being overwritten. 

But writing to  executable text  will make  page dirty and require the write-back which is disabled by MAP_DENYWRITE. (or it might be disable for other processes except current, I am not sure?)


To add to the confusion, the following quote from the LWN articlle 
https://lwn.net/Articles/422487/ about CONFIG_DEBUG_SET_MODULE_RONX 
"Marking the kernel module pages as RO and/or NX is important not only because it is consistent with how the rest of the kernel pages are handled"
  
Digging dipper I see that ARM since kernel version 4.11 has CONFIG_STRICT_KERNEL_RWX ,  and as I understand it is enforced in hardware.

But I am not sure that some variant of pte_clear(), pte_mkexec(0 can not disable it.

So let me cut to final qiestion:

Suppose I want to cut off dynamic code instrumentation, like ftrace and friends.
Is it achievable at least at ARM architecture to enforce RO+X at hardware or kernel? 

Thanks to all folks for reading till this point.

Regards
Lev





More information about the Linux-il mailing list